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1WCI Center for Fusion Theory, NFRI, Daejeon 305-333, South Korea

2CMTFO and CASS, University of California, San Diego, California 92093, USA

3IAS and RIAM, Kyushu University, Kasuga 816-8580, Japan

4LPP, Ecole Polytechnique, CNRS, Palaiseau Cedex 91128, France

(Dated: December 17, 2014)

Abstract

We present a theory of turbulence elasticity, which follows from delayed response of drift waves

(DWs) to zonal flow (ZF) shears. It is shown that when |hV i0ZF |/�!k > 1, with |hV i0ZF | the

ZF shearing rate and �!k the local turbulence decorrelation rate, the ZF evolution equation is

converted from a di↵usion equation to a telegraph equation. This insight provides a natural frame-

work for understanding temporally periodic ZF structures, e.g., propagation of the ZF/turbulence

intensity front. Furthermore, by incorporating the elastic property of the DW-ZF turbulence, we

propose a unified paradigm of low-confinement-mode to intermediate-confinement-mode to high-

confinement-mode (L-I-H) transitions. Especially, we derive the onset and termination conditions

of the limit cycle oscillations(LCOs), i.e., the I-mode. The transition from an unstable L-mode to

I-mode is predicted to occur when �!k < |hV i0ZF | < hV i0cr, where hV i0cr is a critical flow shearing

rate induced by the turbulence elasticity and is derived explicitly. If |hV i0E⇥B| > hV i0cr(hV iE⇥B is

mean E ⇥ B shear flow driven by edge radial electrostatic field), the I-mode will terminate and

spiral into the H-mode.
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I. INTRODUCTION

A predictive model of turbulent transport is essential to the ITER physics program for the

purpose of calculating fluxes and transition thresholds. A persistent topic in the turbulent

transport research is flow-turbulence interaction, which has been recognized crucial to un-

cover the underlying physics mechanisms of the turbulent transport and the LH transition[1].

Curiously, while zonal shear decorrelation of the large eddies is widely invoked as the physics

mechanism underpinning the nearly Gyro-Bohm scaling, LH transition and etc., most re-

duced models of transport treat zonal flows in a rather desultory fashion, if at all. The

essential elements of a zonal flow model for transport calculations are the basic space and

time scales, and the constitutive relation between Reynolds stress and zonal shear. In this

work, we present fundamental advances in the theory of zonal shear dynamics which provides

the essential ingredients mentioned above.

In the first part, we discuss the physical basis of turbulence elasticity, i.e., a finite delay

time in the response of the DW turbulence to the ZF shearing[2, 3]. The strength of the

turbulence elasticity is measured by the delay time and reflects time-history dependence

in the flow-turbulence interaction, i.e., it measures the degree of the frequently employed

Fickian (momentum)flux-gradient relation breaking. We give a heuristic discussion of the

structure of the delay time, and demonstrate its relative importance for di↵erent scenarios of

flow-turbulence interaction. By solving the coupled equations of the ZF and the momentum

flux, we predict the ZF wave phenomenon. This masco-scale wave phenomenon provides a

new way to look at radial propagation of the ZF/turbulence intensity fronts.

In the second part, we propose a simple, unified L-I-H transition model via incorporating

the time delay e↵ect in the conventional Predator-Pray(PP) feedback system[4]. The I-

mode is an intermediate mode during spontaneous L-H transition and it features a stable

phase lag between the DW- and the ZF- intensities, i.e., the LCOs[5, 6]. A quantitative

understanding of the onset mechanism of the I-phase has been elusive. Since the LCOs

often occur in an “intermediate” regime, where the ZF shearing is stronger than the local

turbulence decorrelation rate but not su�ciently strong to fully quench the turbulence, it is

unavoidable to consider the time delay e↵ect when addressing the flow-turbulence interaction

during the L-H transition. In our new PP model, we not only give a clear explanation of the

underlying physics mechanism of the I-mode formation, but also quantitatively predict the
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onset and termination conditions of the LCOs[8]. We show that if the delay time exceeds a

critical value(which also corresponds to a critical E ⇥B shearing rate), the DW-ZF system

will evolve into a stable LCO state, which corresponds to the transition from an unstable

L-mode to I-mode. The termination of the LCOs or the I-H transition occurs if the mean

E ⇥B shear flow, driven by edge ion pressure gradient, is large enough to reduce the delay

time below its threshold value. Therefore, the delay time is the quantity parameterizing

each stage of the L-I-H transition. During the L-H transition, the delay time is essentially

determined by the E ⇥ B shearing time, so, equivalently, we can also say that the E ⇥ B

shear controls the transition. The LCO is triggered if the turbulence-driven-E⇥B-shear(i.e.,

the ZF shear) exceeds the local turbulence decorrelation rate, but weaker than the critical

shear, and the I-H transition occurs if the ion-pressure-driven-E ⇥ B-shear exceeds the

critical shear.

II. THE STRUCTURE OF THE DELAY TIME AND PROPAGATION OF ZF/DW

INTENSITY FRONT

In current paper, we discuss the structure of the delay time in a heuristic style. For more

precise treatment, see refer.[3]. The basic physics determining the structure of the delay

time is the turbulent mixing and hence the delay time is equivalent to the mixing time of

the DW turbulence. In the wave turbulence picture, the turbulent mixing is put forward via

“collisions” between DW packets. In the existence of ZF fields, there are two mechanisms

driving the turbulent relaxation: the local DW-DW scattering(measured by �!k), which

corresponds to the turbulence scrambling, and the nonlocal DW-ZF interaction(measured

by |hV i0ZF |), which corresponds to “refraction” e↵ect of the ZF to the DW packets. The

basic mechanism of the DW-ZF collision is that the ZF shearing can change the radial

wavenumber of the DW packets, and then change the ray trajectories of the DW packets.

Therefore a natural dimensionless parameter, measuring the relative significance of non-

local and local interactions, is |hV i0ZF |/�!k. If |hV i0ZF |/�!k < 1, the turbulent relaxation

is mainly driven by the local DW-DW scatterings, the memory e↵ect in the momentum

transport is negligible. So, the delay time is given by

⌧ ' �!

�1
k . (1)
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This scenario corresponds to the L-mode, where the turbulence intensity is strong.

If |hV i0ZF |/�!k > 1, the nonlocal interaction exceeds the local interaction. In this sce-

nario, the ZF shearing is the dominant relaxation mechanism and, correspondingly, the delay

time is set by the ZF shearing time,

⌧ ' |hV iZF |�1 (2)

In experiments, this “elastic” regime is the so-called Dimits shift regime[7], which is a near

marginally stable regime and features strong E ⇥ B shear flow. In fact, the L-H transition

usually starts from a near Dimits shift regime, so any consistent description of the flow-

turbulence interaction should incorporate the time delay/memory e↵ect.

An enlightening way to see the time delay e↵ect in the flow-turbulence interaction is by

solving the coupled evolution equations of the ZF and the momentum flux. In other words,

the dynamics of the momentum flux should be treated at the same foot as the ZF dynamics.

For the ZF, its evolution equation follows as

@

@t

hV iZF = � @

@x

⇧� �dhV iZF , (3)

where ⇧ is the turbulent momentum flux, and �d is the ZF friction. Because of the time

delay e↵ect, the momentum flux becomes dynamical. Focusing on the physics resulted by a

finite ⌧ , we write the evolution equation of ⇧ in a simplest, nontrivial form, i.e.,

@

@t

⇧ = �⇧� (�D@xhV iZF )

⌧

, (4)

D is a turbulent di↵usion coe�cient. Eqn. (4) indicates that the momentum flux “relaxes”

to a di↵usion form, not transiently, but after a time ⌧ . According Eqn. (4), if the delay

time is very short, one has ⇧ ' (�D@xhV iZF ) and hence the conventional Fickian flux-

gradient relation sets up. Combining Eqns. (3) and (4) yields a Telegraph equation for the

ZF evolution

(1 + ⌧�d)
@

@t

hV iZF = D

@

2

@x

2
hV iZF � ⌧

@

2

@t

2
hV iZF � �dhV iZF . (5)

The 1st on the RHS of Eqn. (5) is the turbulent viscosity term. The 2nd is essentially a new

term induced by the finite delay time, and it is a wavy term and converts the conventional

di↵usive equation of the ZF into a wave equation. By observing the similarity of the 1s and

the 2nd term, we call the 2nd as a turbulence elasticity term with ⌧ the “elastic coe�cient”,

measuring the strength of the turbulence elasticity.
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The key new element here is the “transport of stress”, which gives a time delay and so

allows a propagating secondary wave(ZF wave) to develop in the DW ensemble. The upshots

of this analysis are that a time delay enters and the familiar di↵usive Reynolds equation

is replaced by telegraph equation for the zonal flow. This new theory naturally predicts

radically propagating ZF/turbulence-intensity front, with the propagation velocity scaling

as
p

⌧/D.

III. ELASTIC PREDATOR-PREY SYSTEM: A UNIFIED MODEL OF L-I-H

TRANSITION

The L-I-H transition occurs when the strength of the E⇥B shearing increases significantly,

which is a case that nonlocal process tends to dominant over local process. Therefore, any

further unified understanding of the transition mechanism requires incorporating the elastic

property of the DW turbulence. In other words, one needs a history dependent of DW-ZF

coupling in modeling the flow-turbulence interaction. As the turbulence elasticity features

delayed response of the DW turbulence to the ZF shearing, it can induce a phase lag between

the DW and the ZF. If the phase lag is stabilized, a steady LCO state(i.e., the I-mode) will

form. Motivated by this observation, here we propose a generic and simple L-I-H transition

model, which is relevant to determining the onset and termination of the I-mode.

The constitute equations of our elastic 2-fields PP model are[8]

@
@t
"D(t) = �l"D(t)� �nl"

2
D(t)� ↵"Z(t� ⌧)"D(t), (6)

@
@t
"Z(t) = ��d"Z(t) + ↵"D(t)"Z(t� ⌧). (7)

"D("Z) is the energy intensity of the DW(ZF), �l is the linear growth rate of the DW, �nl

describes the local coupling between DWs, �d is the ZF frictional damping, and ↵ describes

the nonlocal coupling between DW and ZF. The sign of the DW-ZF coupling in Eqn. (7)

is opposite to that in Eqn. (6), so that energy conservation is guaranteed during DW-ZF

interaction. The exact forms of these coe�cients are not crucial to the conclusion of this

paper, so we simply take them as given parameters. Eqns. (6) and (7) are the simplest,

nontrivial version of an elastic PP model. The two fixed points of Eqns. (6) and (7) are

("D, "Z) =
⇣

�l
�nl

, 0
⌘

and ("D, "Z) =
�
�d
↵
,

�l
↵
� �nl�d

↵2

�
, which correspond to the L-mode and

the H-mode, respectively. The use of a "Z(t� ⌧)"D(t)-type DW-ZF coupling in Eqn. (6) is
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obvious because of the delayed response of the DW turbulence to the ZF shearing, i.e., the

evolution of the DW intensity at time t relies on the “distortion” by the ZF at the earlier

time, t� ⌧ . Besides energy conservation, the use of the same type DW-ZF coupling in Eqn.

(7) is based on the reason: the nonlinear coupling in Eqn. (7) reflects the back-reaction of

the DW turbulence to the ZF shearing, which can be thought as an “elastic force”. The

elastic force is proportional to the degree of the DW deformation which is then induced by

the ZF shearing at earlier time, so we use the "Z(t� ⌧)"D(t)-type in Eqn. (7).

According to experiments, the characteristic time scale of the DW/ZF intensity variation

is longer than the delay time[6], i.e., |@tln"D,Z | ⌧ ⌧

�1 ' |hV iZF |, and then the history

dependent DW-ZF coupling can be approximated as

"D(t)"Z(t� ⌧) ' "D(t)"Z(t)� ⌧"D
@

@t

"Z . (8)

Substituting Eqn. (8) into Eqns. (6) and (7) yields

@
@t
"D = �l"D � �nl"

2
D � ↵"Z"D � ↵⌧�d � ↵

2
⌧"D

1 + ↵⌧"D

"Z"D,

(9)

@
@t
"Z =

��d"Z + ↵"D"Z

1 + ↵⌧"D

. (10)

Eqns.(9) and (10) are a tractable nonlinear system that incorporates the time delay e↵ect.

They are equivalent to a “projection” of a more realistic system, such as the 3-fields system

composed of the evolutions of "D, "Z and the turbulent momentum flux. Here the e↵ect of

dynamical evolution of the turbulent momentum flux is ‘modeled’ by a history dependent

DW-ZF coupling. However, the reduced model captures the essence(i.e., history dependent

DW-ZF coupling) of the time delay e↵ect, and also is more analytically tractable. Here we

use the elastic 2-fields PP model as a paradigm to illustrate the critical role of the delay

time in L-H transition dynamics. In the strong shearing scenario, the L-mode fixed point is

always stable. To explore the stability of the H-mode fixed point, we linearize Eqns.(9) and

(10) near the H-mode fixed point, and the corresponding trace of the Jacobian matrix is

tr(JH) = ��nl�d

↵

+
↵⌧�d

1 + ⌧�d

⇣
�l

↵

� �nl�d

↵

2

⌘
. (11)

In Eqn. (11), the delay time makes a positive contribution, and hence tends to destabilize

the H-solution. A critical delay time for transition from an unstable H-mode fixed point to
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stable one is given by

tr(JH) = 0 =) ⌧cr =
�nl

↵�l � �nl�d

. (12)

If ⌧ > ⌧cr, both the fixed points in the Eqns. (9) and (10) will become repellers. According

to the Poincaré-Bendixson theorem, the trajectory of the phase point in the phase space of

"Z and "D will then be attracted to a closed orbit, i.e., a limit cycle, and the system will

enter the I-mode. In this state, the DW turbulence is not fully quenched, but oscillates.

Since the delay time scales as ⌧ ' |hV i0ZF |�1, we can also obtain a critical ZF shearing rate

|hV i0cr| = ⌧

�1
cr =

↵�l

�nl

� �d. (13)

The existence of the H-mode fixed point requires ↵�l/�nl � �d > 0, so one has |hV i0cr| > 0,

i.e., the reality condition is satisfied. To initiate the I-mode, it requires that the ZF shearing

rate not be “too” strong, i.e., |hV i0ZF | < |hV i0cr|. To destabilize the L-mode, it requires the

ZF shearing reach a certain level, |hV i0ZF | > �!k. Combining with these two requirements,

one obtains the condition for the L-I transition as

�!k < |hV i0ZF | < |hV i0cr|. (14)

It is widely recognized that the mean E⇥B shear flow driven by the radial electric field,

which is in turn driven by the ion pressure gradient, plays an important role in “locking”

the DW-ZF system to the H-mode. In the preceding section, we showed the delay time to

be a new parameter, controlling the state of the DW-ZF system. As the injected power is

continuously deposited into the plasma, the edge pressure profile will become steeper and

hence a stronger mean E⇥B shear flow(denoted as VE⇥B) will be induced. Clearly, the mean

E ⇥B shear will reduce the delay time, so then impacts the transport barrier dynamics. In

the I-mode, the reduction of the delay time causes the increase of the LCO frequency. If

the ion pressure profile is steepened su�ciently, the mean E ⇥ B shearing rate will exceed

the ZF shearing rate, so that the mean E ⇥ B shearing becomes the dominant turbulence

decorrelation mechanism and the delay time is then given by ⌧ ⇠ |hV i0�1
E⇥B|. In other words,

hV iE⇥B becomes the main “controller” in the later phase of the I-mode. Once

|hV i0E⇥B| > |hV i0cr|, (15)
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: L-mode
: H-mode

εD

εZ

FIG. 1: Blue: I-mode, ⌧ > ⌧cr. Red: H-mode, ⌧ < ⌧cr. The following parameters are employed in

solving Eqns. (9) and (10): �l = 0.8, �nl = 1, ↵ = 2, �d = 0.3 and initial phase point ("D,0, "Z,0) =

(0.8, 0.3). With these parameters, the H-mode corresponds to ("Z , "D) = (0.15, 0.325) and the

L-solution, ("Z , "D) = (0.8, 0). The critical delay time is ⌧cr = 0.77 with ⌧ = 1.8 in the left figure

and ⌧ = 0.5 in the right figure.

the H-solution will become an “attractor”, so that the LCO will terminate and the DW-ZF

system will transit from the I-mode to the H-mode(Fig. 1).

Following the above discussion, we arrive at a unified picture of the L-I-H transition(Fig.

2). The ramping injected power can enhance the turbulent Reynolds stress, which then

drives stronger ZFs. During this process, the ZF continuously extracts energy from the

DW turbulence, and eventually drives the DW-ZF system to the so-called Dimits shift state

and initiates the LCO(I-phase). Once the ion pressure profile is steepened su�ciently, the

mean E ⇥B shear reduces the delay time below its threshold value, so as “kills” the LCOs

and induces the transition from the I-mode to the H-mode. For strong injection, a strong

mean E⇥B shear flow can be rapidly generated and hence the L-mode may transit into the
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H-mode directly, i.e., the so-called stimulated L-H transition[10].

FIG. 2: Sketch of the unified paradigm of L-I-H transition.

IV. SUMMARY AND CONCLUSION

We propose a new concept—turbulence elasticity—in the flow-turbulence interactions.

By discussing the structure of the delay time from dynamical first principle, we show the

turbulence elasticity is a crucial element of the edge physics in confined plasmas, especially

during the transport barrier formation. Since the structure of the delay time can be calcu-

lated consistently in a proper framework, e.g., wave kinetic theory, the physics foundation

of the turbulence elasticity is solid. The most direct consequence of the turbulence elastic-

ity is the “second sound” phenomenon[9], which indicates the ZF(or turbulence intensity)

front can propagate like a wave. For the nonlinear flow-turbulence dynamics, by incorpo-

rating the time delay e↵ect we propose a unified, predictive L-I-H transition mode, i.e., the

elastic 2-fields PP mode. A very experimental relevant quantity—the critical E ⇥ B shear-

ing rate(|hV icr|)—is derived. It is shown that the onset condition of the LCOs(I-mode) is

�!k < |hV i0ZF | < |hV i0cr|, and the I-H transition occurs if |hV i0E⇥B| > |hV i0cr|.

Acknowledgments

We acknowledge the fruitful interactions at the Festival de Théorie, Aix-en-Provence,
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